Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Toxicol Pathol ; : 1926233241247044, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661106

RESUMEN

Nonclinical studies of test articles (TAs) in nonhuman primates are often designed to assess both biodistribution and toxicity. For this purpose, studies commonly use intravenous perfusion of ice-cold (2°C-8°C) saline to facilitate measurements of TA-associated nucleic acids and proteins, after which tissues undergo later fixation by immersion for histological processing and microscopic evaluation. Intriguingly, minimal apoptosis/single cell necrosis (A/SCN) of randomly distributed neural cells is evident in the cerebral cortex and less often the hippocampus in animals from all groups, including vehicle-treated controls. Affected cells exhibit end-stage features such as cytoplasmic hypereosinophilia, nuclear condensation or fragmentation, and shape distortions, so their lineage(s) generally cannot be defined; classical apoptotic bodies are exceedingly rare. In addition, A/SCN is not accompanied by glial reactions, leukocyte infiltration/inflammation, or other parenchymal changes. The severity is minimal in controls but may be slightly exacerbated (to mild) by TA that accumulate in neural cells. One plausible hypothesis explaining this A/SCN exacerbation is that cold shock (perhaps complicated by concurrent tissue acidity and hypoxia) drives still-viable but TA-stressed cells to launch a self-directed death program. Taken together, these observations indicate that A/SCN in brain processed by cold saline perfusion with delayed immersion fixation represents a procedural artifact and not a TA-related lesion.

2.
Food Chem Toxicol ; 188: 114524, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38428799

RESUMEN

Sucralose, a sugar substitute first approved for use in 1991, is a non-caloric sweetener regulated globally as a food additive. Based on numerous experimental animal studies (dating to the 1980s) and human epidemiology studies, international health agencies have determined that sucralose is safe when consumed as intended. A single lifetime rodent carcinogenicity bioassay conducted by the Ramazzini Institute (RI) reported that mice fed diets containing sucralose develop hematopoietic neoplasia, but controversy continues regarding the validity and relevance of these data for predicting health effects in humans. The present paper addresses the controversy by providing the perspective of experienced pathologists on sucralose-related animal toxicity and carcinogenicity data generally, and the RI carcinogenicity bioassay findings specifically, using results from publicly available papers and international regulatory authority decisions. In the authors' view, flaws in the design, methodology, data evaluation, and reporting of the RI carcinogenicity bioassay for sucralose diminish the value of the data as evidence that this agent represents a carcinogenic hazard to humans. This limitation will remain until the RI bioassay is repeated under Good Laboratory Practices and the design, data, and accuracy of the pathology diagnoses and interpretations are reviewed by qualified pathologists with experience in evaluating potential chemically-induced carcinogenic hazards.

3.
Dis Model Mech ; 17(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38501211

RESUMEN

Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.


Asunto(s)
Células Epiteliales , Quinasa 1 de Quinasa de Quinasa MAP , Vagina , Animales , Femenino , Ratones , Células Epiteliales/metabolismo , Epitelio/metabolismo , Vagina/metabolismo , Vía de Señalización Wnt , Quinasa 1 de Quinasa de Quinasa MAP/genética , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo
4.
Toxicol Pathol ; 51(5): 278-305, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-38047294

RESUMEN

Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.


Asunto(s)
Ganglios Espinales , Fibras Nerviosas , Animales , Médula Espinal , Biología
7.
Toxicol Pathol ; 51(4): 176-204, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37489508

RESUMEN

Certain biopharmaceutical products consistently affect dorsal root ganglia, trigeminal ganglia, and/or autonomic ganglia. Product classes targeting ganglia include antineoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, and anti-nerve growth factor agents. This article outlines "points to consider" for sample collection, processing, evaluation, interpretation, and reporting of ganglion findings; these points are consistent with published best practices for peripheral nervous system evaluation in nonclinical toxicity studies. Ganglion findings often occur as a combination of neuronal injury (e.g., degeneration, necrosis, and/or loss) and/or glial effects (e.g., increased satellite glial cell cellularity) with leukocyte accumulation (e.g., mononuclear cell infiltration or inflammation). Nerve fiber degeneration and/or glial reactions may be seen in nerves, dorsal spinal nerve roots, spinal cord, and occasionally brainstem. Interpretation of test article (TA)-associated effects may be confounded by incidental background changes or experimental procedure-related changes and limited historical control data. Reports should describe findings at these sites, any TA relationship, and the criteria used for assigning severity grades. Contextualizing adversity of ganglia findings can require a weight-of-evidence approach because morphologic changes of variable severity occur in ganglia but often are not accompanied by observable overt in-life functional alterations detectable by conventional behavioral and neurological testing techniques.


Asunto(s)
Ganglios Espinales , Sistema Nervioso Periférico , Humanos , Sistema Nervioso Periférico/patología , Neuronas/patología , Médula Espinal/patología , Fibras Nerviosas/patología , Degeneración Nerviosa/patología
8.
Mol Ther ; 31(9): 2767-2782, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37481701

RESUMEN

The AAV9 gene therapy vector presented in this study is safe in mice and non-human primates and highly efficacious without causing overexpression toxicity, a major challenge for clinical translation of Rett syndrome gene therapy vectors to date. Our team designed a new truncated methyl-CpG-binding protein 2 (MECP2) promoter allowing widespread expression of MECP2 in mice and non-human primates after a single injection into the cerebrospinal fluid without causing overexpression symptoms up to 18 months after injection. Additionally, this new vector is highly efficacious at lower doses compared with previous constructs as demonstrated in extensive efficacy studies performed by two independent laboratories in two different Rett syndrome mouse models carrying either a knockout or one of the most frequent human mutations of Mecp2. Overall, data from this multicenter study highlight the efficacy and safety of this gene therapy construct, making it a promising candidate for first-in-human studies to treat Rett syndrome.


Asunto(s)
Síndrome de Rett , Humanos , Ratones , Animales , Síndrome de Rett/genética , Síndrome de Rett/terapia , Síndrome de Rett/metabolismo , Primates/genética , Terapia Genética , Mutación
9.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131749

RESUMEN

Mitogen-Activated Protein 3 Kinase 1 (MAP3K1) is a dynamic signaling molecule with a plethora of cell-type specific functions, most of which are yet to be understood. Here we describe a role for MAP3K1 in the development of female reproductive tract (FRT). MAP3K1 kinase domain-deficient ( Map3k1 ΔKD ) females exhibit imperforate vagina, labor failure, and infertility. These defects correspond to a shunted Müllerian duct (MD), the principle precursor of the FRT, in embryos, while they manifest as a contorted caudal vagina with abrogated vaginal-urogenital sinus fusion in neonates. In epithelial cells, MAP3K1 acts through JNK and ERK to activate WNT, yet in vivo MAP3K1 is crucial for WNT activity in mesenchyme associated with the caudal MD. Expression of Wnt7b is high in wild type, but low in Map3k1 knockout MD epithelium and MAP3K1-deficient keratinocytes. Correspondingly, conditioned media derived from MAP3K1-competent epithelial cells activate TCF/Lef-luciferase reporter in fibroblasts, suggesting that MAP3K1-induced factors released from epithelial cells trans-activate WNT signaling in fibroblasts. Our results reveal a temporal-spatial and paracrine MAP3K1-WNT crosstalk contributing to MD caudal elongation and FRT development. Highlights: MAP3K1 deficient female mice exhibit imperforate vagina and infertilityLoss of MAP3K1 kinase activity impedes Müllerian duct (MD) caudal elongation and fusion with urogenital sinus (UGS) in embryogenesisThe MAP3K1-MAPK pathway up-regulates WNT signaling in epithelial cellsMAP3K1 deficiency down-regulates Wnt7b expression in the MD epithelium and prevents WNT activity in mesenchyme of the caudal MD.

10.
Toxicol Pathol ; 51(1-2): 68-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37057409

RESUMEN

Gliosis, defined as a nonneoplastic reaction (hypertrophy and/or proliferation) of astrocytes and/or microglial cells, is a frequent finding in the central nervous system (CNS [brain and/or spinal cord]) in nonclinical safety studies. Gliosis in rodents and nonrodents occurs at low incidence as a spontaneous finding and is induced by various test articles (e.g., biomolecules, cell and gene therapies, small molecules) delivered centrally (i.e., by injection or infusion into cerebrospinal fluid or neural tissue) or systemically. Several CNS gliosis patterns occur in nonclinical species. First, gliosis may accompany degeneration and/or necrosis of cells (mainly neurons) or neural parenchyma (neuron processes and myelin). Second, gliosis often follows inflammation (i.e., leukocyte accumulation causing parenchymal damage) or neoplasm formation. Third, gliosis may appear as variably sized, randomly scattered foci of reactive glial cells in the absence of visible parenchymal damage or inflammation. In interpreting test article-related CNS gliosis, adversity is indicated by parenchymal injury (e.g., degeneration, necrosis, or inflammation) and not the mere existence of a glial reaction. In the absence of clear structural damage to the parenchyma, gliosis as a standalone CNS finding should be interpreted as a nonadverse reaction to regional alterations in microenvironmental conditions rather than as evidence of a glial reaction associated with neurotoxicity.


Asunto(s)
Gliosis , Médula Espinal , Humanos , Gliosis/tratamiento farmacológico , Gliosis/etiología , Gliosis/patología , Médula Espinal/patología , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/metabolismo , Inflamación/patología , Necrosis/complicaciones , Necrosis/patología , Proteína Ácida Fibrilar de la Glía/metabolismo
11.
Regul Toxicol Pharmacol ; 140: 105343, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36773715

RESUMEN

alpha-Glycosyl isoquercitrin (AGIQ) is a flavonoid that possesses antioxidant and tumor suppressive capabilities and is marketed as a food additive in Japan. The aim of this study was to assess the potential for oral chronic toxicity and carcinogenicity of AGIQ in male and female Sprague Dawley rats following up to 5.0% dietary exposure. In the chronic toxicity study, rats were exposed to AGIQ or vehicle for one year with a 6-month interim termination point; for the carcinogenicity study, rats were treated for 24 months. No signs of AGIQ-related toxicity clinically or histologically were observed for up to one year except for yellow discoloration of bone. In the carcinogenicity study, a statistically significant increase in the incidence of malignant glioma of the brain or spinal cord was observed in female rats exposed to 5.0% AGIQ compared to those exposed to control feed. A Scientific Advisory Panel of experienced neuropathologists reviewed the gliomas (routine stains and glial cell markers) and concluded that the gliomas were a rare, spontaneous, rat-specific neoplasm: malignant microglial tumor. The lesions could not definitively be attributed to AGIQ exposure and have limited implications with respect to predicting human cancer risk.


Asunto(s)
Glioma , Quercetina , Ratas , Masculino , Femenino , Humanos , Animales , Ratas Sprague-Dawley , Quercetina/toxicidad , Antioxidantes , Glioma/inducido químicamente
12.
Food Chem Toxicol ; 171: 113504, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36414169

RESUMEN

Aspartame, an artificial sweetener commonly used as a sugar substitute, is currently authorized for use in more than 100 countries. Hundreds of studies, conducted in various countries dating back to the 1970s, have shown that aspartame is safe at real-world exposure levels. Furthermore, multiple human epidemiology studies have provided no indication that consumption of aspartame induces cancer. Given the continued controversy surrounding the Ramazzini Institute's (RI) studies suggesting that aspartame is a carcinogenic hazard in rodents and evaluation by the International Agency for Research on Cancer, this report aims to provide the perspective of experienced pathologists on publicly available pathology data regarding purported proliferative lesions in liver, lung, lymphoid organs, and mammary gland as well as their implications for human risk assessment as reported for three lifetime rodent carcinogenicity bioassays of aspartame conducted at the RI. In the authors' view, flaws in the design, methodology and reporting of the RI aspartame studies limit the utility of the data sets as evidence that this agent represents a carcinogenic hazard. Therefore, all three RI studies, and particularly the accuracy of their pathology diagnoses and interpretations, should be rigorously reviewed by qualified and experienced veterinary toxicologic pathologists in assessing aspartame's carcinogenic risk.


Asunto(s)
Aspartame , Neoplasias , Animales , Femenino , Embarazo , Humanos , Roedores , Patólogos , Edulcorantes , Carcinógenos , Carcinogénesis , Bioensayo/métodos
13.
Toxicol Pathol ; 51(7-8): 414-431, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38380881

RESUMEN

Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.


Asunto(s)
Neuropatología , Ácidos Nucleicos , Encéfalo , Médula Espinal , Nervio Ciático
14.
Toxicol Pathol ; 51(6): 375-389, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-38179962

RESUMEN

Direct delivery of therapeutics to the central nervous system (CNS) greatly expands opportunities to treat neurological diseases but is technically challenging. This opinion outlines principal technical aspects of direct CNS delivery via intracerebroventricular (ICV) or intrathecal (IT) injection to common nonclinical test species (rodents, dogs, and nonhuman primates) and describes procedure-related clinical and histopathological effects that confound interpretation of test article-related effects. Direct dosing is by ICV injection in mice due to their small body size, while other species are dosed IT in the lumbar cistern. The most frequent procedure-related functional effects are transient absence of lower spinal reflexes after IT injection or death soon after ICV dosing. Common procedure-related microscopic findings in all species include leukocyte infiltrates in CNS meninges or perivascular (Virchow-Robin) spaces; nerve fiber degeneration in the spinal cord white matter (especially dorsal and lateral tracts compressed by dosing needles or indwelling catheters), spinal nerve roots, and sciatic nerve; meningeal fibrosis at or near IT injection sites; hemorrhage; and gliosis. Findings typically are minimal to occasionally mild. Findings tend to be more severe and/or have a higher incidence in the spinal cord segments and spinal nerve roots at or close to the site of administration.


Asunto(s)
Oligonucleótidos , Roedores , Perros , Ratones , Animales , Sistema Nervioso Central/patología , Médula Espinal/patología , Degeneración Nerviosa/patología , Primates
15.
Toxicol Pathol ; 51(6): 363-374, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-38288942

RESUMEN

Existing nervous system sampling and processing "best practices" for nonclinical general toxicity studies (GTS) were designed to assess test articles with unknown, no known, or well-known neurotoxic potential. Similar practices are applicable to juvenile animal studies (JAS). In GTS and JAS, the recommended baseline sampling for all species includes brain (7 sections), spinal cord (cervical and lumbar divisions [cross and longitudinal sections for each]), and 1 nerve (sciatic or tibial [cross and longitudinal sections]) in hematoxylin and eosin-stained sections. Extra sampling and processing (ie, an "expanded neurohistopathology evaluation" [ENHP]) are used for agents with anticipated neuroactivity (toxic ± therapeutic) of incompletely characterized location and degree. Expanded sampling incorporates additional brain (usually 8-15 sections total), spinal cord (thoracic ± sacral divisions), ganglia (somatic ± autonomic, often 2-8 total), and/or nerves (2-6 total) depending on the species and study objectives. Expanded processing typically adds special neurohistological procedures (usually 1-4 for selected samples) to characterize glial reactions, myelin integrity, and/or neuroaxonal damage. In my view, GTS and JAS designs should sample neural tissues at necropsy as if ENHP will be needed eventually, and when warranted ENHP may incorporate expanded sampling and/or expanded processing depending on the study objective(s).


Asunto(s)
Encéfalo , Síndromes de Neurotoxicidad , Animales , Proyectos de Investigación , Vaina de Mielina , Médula Espinal
16.
Sci Rep ; 12(1): 22627, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587032

RESUMEN

Arthrofibrosis following total knee arthroplasty (TKA) is a debilitating condition typically diagnosed based on clinical findings. To gain insight into the histopathologic immune cell microenvironment of arthrofibrosis, we assessed the extent of tissue fibrosis and quantified immune cell populations in specific tissue regions of the posterior capsule. We investigated specimens from three prospectively-collected, matched cohorts, grouped as patients receiving a primary TKA for osteoarthritis, revision TKA for arthrofibrosis, and revision TKA for non-arthrofibrotic, non-infectious reasons. Specimens were evaluated using hematoxylin and eosin staining, picrosirius red staining, immunofluorescence, and immunohistochemistry with Aperio®-based digital image analysis. Increased collagen deposition and increased number of α-SMA/ACTA2 expressing myofibroblasts were present in the arthrofibrosis group compared to the two non-arthrofibrotic groups. CD163 + macrophages were the most abundant immune cell type in any capsular sample with specific enrichment in the synovial tissue. CD163 + macrophages were significantly decreased in the fibrotic tissue region of arthrofibrosis patients compared to the patients with primary TKA, and significantly increased in adipose tissue region of arthrofibrotic specimens compared to non-arthrofibrotic specimens. Synovial CD117 + mast cells were significantly decreased in arthrofibrotic adipose tissue. Together, these findings inform diagnostic and targeted therapeutic strategies by providing insight into the underlying pathogenetic mechanisms of arthrofibrosis.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Artropatías , Humanos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Rodilla/métodos , Articulación de la Rodilla/patología , Artropatías/patología , Fibrosis , Membrana Sinovial/patología
17.
Toxicol Pathol ; 50(8): 930-941, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36377245

RESUMEN

This article describes the Society of Toxicologic Pathology's (STP) five recommended ("best") practices for appropriate use of informed (non-blinded) versus masked (blinded) microscopic evaluation in animal toxicity studies intended for regulatory review. (1) Informed microscopic evaluation is the default approach for animal toxicity studies. (2) Masked microscopic evaluation has merit for confirming preliminary diagnoses for target organs and/or defining thresholds ("no observed adverse effect level" and similar values) identified during an initial informed evaluation, addressing focused hypotheses, or satisfying guidance or requests from regulatory agencies. (3) If used as the approach for an animal toxicity study to investigate a specific research question, masking of the initial microscopic evaluation should be limited to withholding only information about the group (control or test article-treated) and dose equivalents. (4) The decision regarding whether or not to perform a masked microscopic evaluation is best made by a toxicologic pathologist with relevant experience. (5) Pathology peer review, performed to verify the microscopic diagnoses and interpretations by the study pathologist, should use an informed evaluation approach. The STP maintains that implementing these five best practices has and will continue to consistently deliver robust microscopic data with high sensitivity for animal toxicity studies intended for regulatory review. Consequently, when conducting animal toxicity studies, the advantages of informed microscopic evaluation for maximizing sensitivity outweigh the perceived advantages of minimizing bias through masked microscopic examination.


Asunto(s)
Patólogos , Revisión por Pares , Animales , Humanos , Microscopía , Nivel sin Efectos Adversos Observados
18.
Mol Ther Methods Clin Dev ; 26: 532-546, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36092362

RESUMEN

Despite recent therapeutic advances, metastatic breast cancer (MBC) remains incurable. Engineered measles virus (MV) constructs based on the attenuated MV Edmonston vaccine platform have demonstrated significant oncolytic activity against solid tumors. The Helicobacter pylori neutrophil-activating protein (NAP) is responsible for the robust inflammatory reaction in gastroduodenal mucosa during bacterial infection. NAP attracts and activates immune cells at the site of infection, inducing expression of pro-inflammatory mediators. We engineered an MV strain to express the secretory form of NAP (MV-s-NAP) and showed that it exhibits anti-tumor and immunostimulatory activity in human breast cancer xenograft models. In this study, we utilized a measles-infection-permissive mouse model (transgenic IFNAR KO-CD46Ge) to evaluate the biodistribution and safety of MV-s-NAP. The primary objective was to identify potential toxic side effects and confirm the safety of the proposed clinical doses of MV-s-NAP prior to a phase I clinical trial of intratumoral administration of MV-s-NAP in patients with MBC. Both subcutaneous delivery (corresponding to the clinical trial intratumoral administration route) and intravenous (worst case scenario) delivery of MV-s-NAP were well tolerated: no significant clinical, laboratory or histologic toxicity was observed. This outcome supports the safety of MV-s-NAP for oncolytic virotherapy of MBC. The first-in-human clinical trial of MV-s-NAP in patients with MBC (ClinicalTrials.gov: NCT04521764) was subsequently activated.

19.
Toxicol Pathol ; 50(5): 693-711, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35695393

RESUMEN

The increasing specificity of novel druggable targets coupled with the complexity of emerging therapeutic modalities for treating human diseases has created a growing need for nonhuman primates (NHPs) as models for translational drug discovery and nonclinical safety assessment. In particular, NHPs are critical for investigating potential unexpected/undesired on-target and off-target liabilities associated with administration of candidate biotherapeutics (nucleic acids, proteins, viral gene therapy vectors, etc.) to treat nervous system disorders. Nervous system findings unique to or overrepresented in NHPs administered biomolecule-based ("biologic") test articles include mononuclear cell infiltration in most neural tissues for all biomolecule classes as well as neuronal necrosis with glial cell proliferation in sensory ganglia for certain viral vectors. Such test article-related findings in NHPs often must be differentiated from procedural effects (e.g., local parenchymal or meningeal reactions associated with an injection site or implanted catheter to administer a test article directly into the central nervous system) or spontaneous background findings (e.g., neuronal autophagy in sensory ganglia).


Asunto(s)
Enfermedades del Sistema Nervioso , Opinión Pública , Animales , Vectores Genéticos , Humanos , Enfermedades del Sistema Nervioso/inducido químicamente , Neuropatología , Primates
20.
Toxicol Pathol ; 50(4): 432-465, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730663

RESUMEN

Beagle dogs are a key nonrodent species in nonclinical safety evaluation of new biomedical products. The Society of Toxicologic Pathology (STP) has published "best practices" recommendations for nervous system sampling in nonrodents during general toxicity studies (Toxicol Pathol 41[7]: 1028-1048, 2013), but their adaptation to the Beagle dog has not been defined specifically. Here we provide 2 trimming schemes suitable for evaluating the unique neuroanatomic features of the dog brain in nonclinical toxicity studies. The first scheme is intended for general toxicity studies (Tier 1) to screen test articles with unknown or no anticipated neurotoxic potential; this plan using at least 7 coronal hemisections matches the STP "best practices" recommendations. The second trimming scheme for neurotoxicity studies (Tier 2) uses up to 14 coronal levels to investigate test articles where the brain is a suspected or known target organ. Collection of spinal cord, ganglia (somatic and autonomic), and nerves for dogs during nonclinical studies should follow published STP "best practices" recommendations for sampling the central (Toxicol Pathol 41[7]: 1028-1048, 2013) and peripheral (Toxicol Pathol 46[4]: 372-402, 2018) nervous systems. This technical guide also demonstrates the locations and approaches to collecting uncommonly sampled peripheral nervous system sites.


Asunto(s)
Síndromes de Neurotoxicidad , Pruebas de Toxicidad , Animales , Perros , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/veterinaria , Sistema Nervioso Periférico , Manejo de Especímenes , Médula Espinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...